Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The genus Chilecicada Sanborn, 2014 is shown to be a complex of closely related species rather than a monospecific genus. Chilecicada citatatemporaria Sanborn & Cole n. sp., C. culenesensis Sanborn & Cole n. sp., C. curacaviensis Sanborn & Cole n. sp., C. impartemporaria Sanborn & Cole n. sp., C. magna Sanborn & Cole n. sp., C. mapuchensis Sanborn n. sp., C. oraria Sanborn & Cole n. sp., C. parrajaraorum Sanborn n. sp., C. partemporaria Sanborn & Cole n. sp., C. pehuenchesensis Sanborn & Cole n. sp., C. trifascia Sanborn n. sp., C. trifasciunca Sanborn & Cole n. sp., and C. viridicitata Sanborn & Cole n. sp. are described as new. Chilecicada occidentis Walker, 1850 is re-described to facilitate separation of the new species from the only previously known species. Song and cytochrome oxidase I analysis available for most species support the separation of the new taxa from the type species of the genus. Known species distributions and a key to the species of the genus are also provided. The new species increases the known cicada diversity 61.9% to 34 species, 91.2% of which are endemic to Chile.more » « less
- 
            ABSTRACT For insects that depend on one or more bacterial endosymbionts for survival, it is critical that these bacteria are faithfully transmitted between insect generations. Cicadas harbor two essential bacterial endosymbionts, “ Candidatus Sulcia muelleri” and “ Candidatus Hodgkinia cicadicola.” In some cicada species, Hodgkinia has fragmented into multiple distinct but interdependent cellular and genomic lineages that can differ in abundance by more than two orders of magnitude. This complexity presents a potential problem for the host cicada, because low-abundance but essential Hodgkinia lineages risk being lost during the symbiont transmission bottleneck from mother to egg. Here we show that all cicada eggs seem to receive the full complement of Hodgkinia lineages, and that in cicadas with more complex Hodgkinia this outcome is achieved by increasing the number of Hodgkinia cells transmitted by up to 6-fold. We further show that cicada species with varying Hodgkinia complexity do not visibly alter their transmission mechanism at the resolution of cell biological structures. Together these data suggest that a major cicada adaptation to changes in endosymbiont complexity is an increase in the number of Hodgkinia cells transmitted to each egg. We hypothesize that the requirement to increase the symbiont titer is one of the costs associated with Hodgkinia fragmentation. IMPORTANCE Sap-feeding insects critically rely on one or more bacteria or fungi to provide essential nutrients that are not available at sufficient levels in their diets. These microbes are passed between insect generations when the mother places a small packet of microbes into each of her eggs before it is laid. We have previously described an unusual lineage fragmentation process in a nutritional endosymbiotic bacterium of cicadas called Hodgkinia . In some cicadas, a single Hodgkinia lineage has split into numerous related lineages, each performing a subset of original function and therefore each required for normal host function. Here we test how this splitting process affects symbiont transmission to eggs. We find that cicadas dramatically increase the titer of Hodgkinia cells passed to each egg in response to lineage fragmentation, and we hypothesize that this increase in bacterial cell count is one of the major costs associated with endosymbiont fragmentation.more » « less
- 
            null (Ed.)Abstract Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
